1/ Limited “Useable” Capacity
It is typically considered wise to use just 30% – 50% of the
rated capacity of typical lead acid “Deep Cycle” batteries. This means that a
600 amp hour battery bank in practice only provides, at best, 300 amp hours of
real capacity.
If you even occasionally drain the batteries more than this their life will be drastically cut short.
If you even occasionally drain the batteries more than this their life will be drastically cut short.
2/ Limited Cycle Life
Even if you are going easy on your batteries and are careful
to never overly drain them, even the best deep cycle lead acid batteries are
typically only good for 500-1000 cycles. If you are frequently tapping into
your battery bank, this could mean that your batteries may need replacement
after less than 2 years use.
3/ Slow & Inefficient Charging
The final 20% of lead acid battery capacity can not be
“fast” charged. The first 80% can be “Bulk Charged” by a smart three-stage
charger quickly (particularly AGM batteries can handle a high bulk charging
current), but then the “Absorption” phase begins and the charging current drops
off dramatically.
Just like a software development project, the final 20% of
the work can end up taking 80% of the time.
This isn’t a big deal if you are charging plugged in
overnight, but it is a huge issue if you have to leave your generator running
for hours (which can be rather noisy and expensive to run). And if you are
depending on solar and the sun sets before that final 20% has been topped off,
you can easily end up with batteries that never actually get fully charged.
Not fully charging the final few percent would not be much
of a problem in practice, if it wasn’t for the fact that a failure to regularly
fully charge lead acid batteries prematurely ages them.
4/ Wasted Energy
In addition to all that wasted generator time, lead acid
batteries suffer another efficiency issue – they waste as much as 15% of the
energy put into them via inherent charging inefficiency. So if you provide 100
amps of power, you’ve only storing 85 amp hours.
This can be especially frustrating when charging via solar, when you
are trying to squeeze as much efficiency out of every amp as possible before
the sun goes down or gets covered up by clouds.
5/ Peukert’s Losses
The faster that you discharge a lead acid battery of any
type, the less energy you can get out of it. This effect can be calculated by
applying Peukert’s
Law (named after German scientist W. Peukert), and in practice this
means that high current loads like an air conditioner, a microwave or an
induction cooktop can result in a lead acid battery bank being able to actually
deliver as little as 60% of its normal capacity. This is a huge loss in
capacity when you need it most…
Aftermath of Peukert losses on Lead acid fast discharge
The above example shows specification of Concord AGM battery
: this spec states that the battery can provide 100% of it’s rated capacity if
discharged in 20 hours (C/20). If discharged in one hour (C/1), only
60% of rated capacity will be delivered by the battery. This is direct
effect of Peukert losses.
At the end of the day, an AGM battery rated for
100Ah at C/20 will provide a 30Ah usable capacity when discharged in one hour as
30Ah = 100Ah x 50% DoD x 60% (Peukert losses).
6/ Placement issues
Flooded lead acid batteries release noxious acidic gas while
they are charging, and must be contained in a sealed battery box that is vented
to the outside. They also must be stored upright, to avoid battery acid spills.
AGM batteries do not have these constraints, and can be
placed in unventilated areas – even inside your living space. This is one of
the reasons that AGM batteries have become so popular with sailors.
6/ Maintenance Requirements
Flooded lead acid batteries must be periodically topped off
with distilled water, which can be a cumbersome maintenance chore if your
battery bays are difficult to get to.
AGM and gel cells though are truly maintenance free. Being
maintenance free comes with a downside though – a flooded cell battery that is
accidentally overcharged can often be salvaged by replacing the water that
boiled off. A gel or AGM battery that is overcharged is often irreversibly
destroyed.
7/ Voltage Sag
A fully charged 12-volt lead acid battery starts off around
12.8 volts, but as it is drained the voltage drops steadily. The voltage drops
below 12 volts when the battery still has 35% of its total capacity remaining,
but some electronics may fail to operate with less than a full 12 volt supply.
This “sag” effect can also lead to lights dimming.
8/ Size & Weight
A typical 8D sized battery that is commonly used for large
battery banks is 20.5″ x 10.5″ x 9.5″. To pick a specific 8D example, Trojan’s 8D-AGM weighs 167lbs, and provides just 230
amp-hours of total capacity – which leaves you with 115 amp hours truly usable,
and only 70 for a high discharge applications!
If you are designing for extensive boon docking, you will
want at least four 8D’s, or as many as eight. That is a LOT of weight to be
carting around that impacts your fuel economy.
More Information: https://www.lithiumbatterystore.com/golf-carts-ev